Translational signalling, atrogenic and myogenic gene expression during unloading and reloading of skeletal muscle in myostatin-deficient mice

肌生长抑制素缺乏小鼠骨骼肌卸载和重新加载过程中的翻译信号、原肌生成和肌生成基因表达

阅读:13
作者:Heather K Smith, Kenneth G Matthews, Jenny M Oldham, Ferenc Jeanplong, Shelley J Falconer, James J Bass, Mônica Senna-Salerno, Jeremy W Bracegirdle, Christopher D McMahon

Abstract

Skeletal muscles of myostatin null (Mstn(-/-)) mice are more susceptible to atrophy during hind limb suspension (HS) than are muscles of wild-type mice. Here we sought to elucidate the mechanism for this susceptibility and to determine if Mstn(-/-) mice can regain muscle mass after HS. Male Mstn(-/-) and wild-type mice were subjected to 0, 2 or 7 days of HS or 7 days of HS followed by 1, 3 or 7 days of reloading (n = 6 per group). Mstn(-/-) mice lost more mass from muscles expressing the fast type IIb myofibres during HS and muscle mass was recovered in both genotypes after reloading for 7 days. Concentrations of MAFbx and MuRF1 mRNA, crucial ligases regulating the ubiquitin-proteasome system, but not MUSA1, a BMP-regulated ubiquitin ligase, were increased more in muscles of Mstn(-/-) mice, compared with wild-type mice, during HS and concentrations decreased in both genotypes during reloading. Similarly, concentrations of LC3b, Gabarapl1 and Atg4b, key effectors of the autophagy-lysosomal system, were increased further in muscles of Mstn(-/-) mice, compared with wild-type mice, during HS and decreased in both genotypes during reloading. There was a greater abundance of 4E-BP1 and more bound to eIF4E in muscles of Mstn(-/-) compared with wild-type mice (P<0.001). The ratio of phosphorylated to total eIF2α increased during HS and decreased during reloading, while the opposite pattern was observed for rpS6. Concentrations of myogenic regulatory factors (MyoD, Myf5 and myogenin) mRNA were increased during HS in muscles of Mstn(-/-) mice compared with controls (P<0.001). We attribute the susceptibility of skeletal muscles of Mstn(-/-) mice to atrophy during HS to an up- and downregulation, respectively, of the mechanisms regulating atrophy of myofibres and translation of mRNA. These processes are reversed during reloading to aid a faster rate of recovery of muscle mass in Mstn(-/-) mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。