Atp23p and Atp10p coordinate to regulate the assembly of yeast mitochondrial ATP synthase

Atp23p 和 Atp10p 协同调控酵母线粒体 ATP 合酶的组装

阅读:4
作者:Guangying Yang ,Yuanyuan Ding ,Xiaohui Shang ,Tong Zhao ,Shan Lu ,Jinghan Tian ,Jun Weng ,Xiaomei Zeng

Abstract

Two chaperones, Atp23p and Atp10p, were previously shown to regulate the assembly of yeast mitochondrial ATP synthase, and extra expression of ATP23 was found to partially rescue an atp10 deletion mutant, by an unknown mechanism. Here, we identified that the residues 112-115 (LRDK) of Atp23p were required for its function in assisting assembly of the synthase, and demonstrated both functions of Atp23p, processing subunit 6 precursor and assisting assembly of the synthase, were required for the partial rescue of atp10 deletion mutant. By chasing labeling with isotope 35 S-methionine, we found the stability of subunit 6 of the synthase increased in atp10 null strain upon overexpression of ATP23. Further co-immunoprecipitation (Co-IP) and blue native PAGE experiments showed that Atp23p and Atp10p were physically associated with each other in wild type. Moreover, we revealed the expression level of Atp23p increased in atp10 null mutant compared with the wild type. Furthermore, we found that, after 72 hours growth, atp10 null mutant showed leaky growth on respiratory substrates, presence of low level of subunit 6 and partial recovery of oligomycin sensitivity of mitochondrial ATPase activity. Further characterization revealed the expression of Atp23p increased after 24 hours growth in the mutant. These results indicated, in atp10 null mutant, ATP10 deficiency could be partially complemented with increased expression of Atp23p by stabilizing some subunit 6 of the synthase. Taken together, this study revealed the two chaperones Atp23p and Atp10p coordinated to regulate the assembly of mitochondrial ATP synthase, which advanced our understanding of mechanism of assembly of yeast mitochondrial ATP synthase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。