Stress and traumatic experiences have significant and lasting effects on sensory systems. We recently identified unique expression of proteins associated with epidermal skin cells (keratinocytes) and mechanosensory Merkel cells (MC) in circulating extracellular vesicles from adult women who had experienced sexual trauma specifically during adolescence, biologically linking trauma exposure with a specific neuron-like skin cell. Here, we aimed to develop and validate a preclinical mouse model utilizing chemogenetic (DREADD Gq) activation of a population of MC. Using a reporter line, we confirmed the expected pattern of the Krt14 Cre in specific MC skin areas and that these tissues expressed relevant MC marker genes similarly between male and female mice. Chemogenetic stimulation of MC produced robust neuronal activation of the insular cortex (IC), a brain region relevant to somatosensory and valence integration. To determine if the mice could detect MC activation, home cage behaviors following CNO treatment significantly increased nest grooming time. Conditioned place preference further revealed an avoidance response following MC stimulation; an effect that was stronger in female mice. Finally, to connect back to our trauma question, we examined MC activation in fear conditioning and identified deficits in fear extinction. Overall, these studies validate utilization of this preclinical model in further investigating the mechanosensory system and its potential involvement in PTSD symptoms and therapeutic interventions. Ongoing studies will focus on critical developmental periods relevant to both MC development and sex differences associated with trauma vulnerability and potential sensory based therapeutic options for PTSD-related symptoms.
Merkel cell stimulation in fear and sensory signaling.
恐惧和感觉信号传导中的默克尔细胞刺激
阅读:22
作者:Korgan Austin C, Orso Rodrigo, Sibley Isabelle J, Prendergast Kathryn E, Jovanovic Tanja, Bale Tracy L
| 期刊: | Neuropsychopharmacology | 影响因子: | 7.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;50(9):1395-1405 |
| doi: | 10.1038/s41386-025-02144-w | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
