Exploring the effects of culture conditions on Yapsin (YPS) gene expression in Nakaseomyces glabratus.

探索培养条件对光滑中酵母菌(Nakaseomyces glabratus)中 Yapsin(YPS)基因表达的影响

阅读:3
作者:Bednarek Aneta, Kabut Agnieszka, Rapala-Kozik Maria, Satala Dorota
Nakaseomyces glabratus, previously known as Candida glabrata, has the great potential to cause systemic fungal infections despite its similarity to baker's yeast. Its pathogenicity is attributed to the production of numerous virulence factors, among which the YPS genes (YPS1-YPS11) encoding aspartyl proteases have yet to be sufficiently characterized, and limited studies suggest their involvement in cellular homeostasis. The study's novelty is an investigation of the role of YPS in N. glabratus's ability to adapt to different host environments. For this purpose, we isolated RNA from N. glabratus cells grown in both host niche-mimicking culture media, such as artificial saliva (AS) and vagina-simulating media (VS), as well as standard yeast media (RPMI 1640 and YPDA). We then performed quantitative real-time PCR to evaluate YPS gene expression at different growth phases. At the early logarithmic phase, we observed a general increase in the expression levels of YPS genes; however, at the stationary phase, high expression levels were maintained for YPS7 in RPMI 1640 and YPDA media and YPS6 in RPMI 1640 and AS media. In addition, although the VS medium does not promote the proliferation of N. glabratus, the yeast can survive in an acidic environment, and the significantly overexpressed gene is YPS7. These findings underscore the significant modulation of N. glabratus YPS gene expression in response to external environmental conditions. This research provides insights into the molecular basis of N. glabratus pathogenicity and highlights new potential targets for antifungal therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。