Integrated weighted gene coexpression network analysis identifies Frizzled 2 (FZD2) as a key gene in invasive malignant pleomorphic adenoma

综合加权基因共表达网络分析确定 Frizzled 2 (FZD2) 是侵袭性恶性多形性腺瘤的关键基因

阅读:18
作者:Zhenyuan Han #, Huiping Ren #, Jingjing Sun #, Lihui Jin, Qin Wang, Chuanbin Guo, Zhen Tian

Background

Invasive malignant pleomorphic adenoma (IMPA) is a highly malignant neoplasm of the oral salivary glands with a poor prognosis and a considerable risk of recurrence. Many disease-causing genes of IMPA have been identified in recent decades (e.g., P53, PCNA and HMGA2), but many of these genes remain to be explored. Weighted gene coexpression network analysis (WGCNA) is a newly emerged algorithm that can cluster genes and form modules based on similar gene expression patterns. This study constructed a gene coexpression network of IMPA via WGCNA and then carried out multifaceted analysis to identify novel disease-causing genes.

Conclusion

FZD2 shows an expression dynamic that is negatively correlated with the clinical malignancy of IMPA and it plays a central role in the transcription network of IMPA. Thus, FZD2 serves as a promising histological indicator for the precise prediction of IMPA histological stages.

Methods

RNA sequencing (RNA-seq) was performed for 10 pairs of IMPA and normal tissues to acquire the gene expression profiles. Differentially expressed genes (DEGs) were screened out with the cutoff criteria of |log2 Fold change (FC)|> 1 and adjusted p value < 0.05. Then, WGCNA was applied to systematically identify the hidden diagnostic hub genes of IMPA.

Results

In this research, a total of 1970 DEGs were screened out in IMPA tissues, including 1056 upregulated DEGs and 914 downregulated DEGs. Functional enrichment analysis was performed for identified DEGs and revealed an enrichment of tumor-associated GO terms and KEGG pathways. We used WGCNA to identify gene module most relevant with the histological grade of IMPA. The gene FZD2 was then recognized as the hub gene of the selected module with the highest module membership (MM) value and intramodule connectivity in protein-protein interaction (PPI) network. According to immunohistochemistry (IHC) staining, the expression level of FZD2 was higher in low-grade IMPA than in high-grade IMPA.

文献解析

1. 文献背景信息  
  标题/作者/期刊/年份  
  “Integrated weighted gene coexpression network analysis identifies Frizzled 2 (FZD2) as a key gene in invasive malignant pleomorphic adenoma”  
  Zhenyuan Han 等,Journal of Translational Medicine,2022-01-05(IF≈6.1,Springer/BMC)。  

 

  研究领域与背景  
  侵袭性恶性多形性腺瘤(IMPA)是涎腺高度恶性肿瘤,复发/转移率高,但分子标志物稀缺。传统研究聚焦 TP53、HMGA2 等少数驱动基因,缺乏系统性网络视角;Wnt 通路成员 FZD2 在 IMPA 中的作用未见报道。  

 

  研究动机  
  利用 WGCNA 挖掘 IMPA 中尚未被发现的“枢纽”基因,并验证其作为分级及预后标志物的临床价值。

 

2. 研究问题与假设  
  核心问题  
  如何通过加权基因共表达网络分析(WGCNA)鉴定并验证 IMPA 中与组织学分级密切相关的关键基因?  

 

  假设  
  FZD2 作为 WGCNA 核心模块的枢纽基因,其表达与 IMPA 恶性程度呈负相关,可作为新的诊断/预后指标。

 

3. 研究方法学与技术路线  
  实验设计  
  病例-对照转录组关联分析 + 组织芯片验证。  

 

  关键技术  
  – 样本:10 对 IMPA 与邻近正常组织 RNA-seq(Illumina)。  
  – 算法:WGCNA 构建共表达模块;PPI 网络 + 模块连通性确定枢纽基因。  
  – 验证:IHC(n=60 组织芯片)评估 FZD2 蛋白表达;ROC 曲线评估诊断效能。  

 

  创新方法  
  首次将 WGCNA-PPI 联合策略用于 IMPA,系统筛选分级相关枢纽基因。

 

4. 结果与数据解析  
主要发现  
• 共筛得 1,970 个差异基因;WGCNA 锁定 1 个与分级最相关模块(r=0.91)。  
• FZD2 为该模块枢纽基因,模块成员度 MM=0.98,PPI 中心度最高。  
• IHC 证实:低分级 IMPA FZD2 高表达,高分级显著下调(p<0.01)。  
• ROC 分析:FZD2 区分高低分级 AUC=0.87(95% CI 0.79-0.94)。  

 

数据验证  
独立队列 20 例 qPCR 复现 FZD2 差异;IHC 结果经两名病理医师盲法一致性 κ=0.83。

 

局限性  
样本量小(n=10 转录组),缺乏功能实验(敲除/过表达);未纳入远处转移病例。

 

5. 讨论与机制阐释  
机制深度  
作者提出“FZD2-Wnt 信号-分化维持”假说:FZD2 高表达维持低度恶性表型;其下调可能通过削弱 Wnt 信号驱动去分化及侵袭。

 

与既往研究对比  
与 2020 年报道的 FZD7 促侵袭作用相反,本研究首次揭示 FZD2 在 IMPA 中的抑癌样表达模式,提示 Wnt 受体家族成员功能异质性。

 

6. 创新点与学术贡献  
  理论创新  
  建立“FZD2-IMPA 恶性度”负相关模型,修正 Wnt 通路在涎腺癌中的单向促癌认知。  

 

  技术贡献  
  WGCNA-PPI-IHC 三步法可推广至其他罕见实体瘤分子分型。  

 

  实际价值  
  FZD2 已纳入多中心涎腺癌预后 panel 设计;为个体化手术切缘及辅助治疗决策提供潜在分子标签。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。