Continuous high-frequency deep brain stimulation of the anterior insula modulates autism-like behavior in a valproic acid-induced rat model
持续高频深部脑岛刺激可调节丙戊酸诱发大鼠模型中的自闭症样行为
| 期刊: | Journal of Translational Medicine | 影响因子: | 6.100 |
| 时间: | 2022 | 起止号: | 2022 Dec 6;20(1):570. |
| doi: | 10.1186/s12967-022-03787-9 | 研究方向: | 神经 |
| 疾病类型: | 自闭症 | ||
文献解析
1. 文献背景信息
标题/作者/期刊/年份
“Continuous high-frequency deep brain stimulation of the anterior insula modulates autism-like behavior in a valproic acid-induced rat model”
Lifei Xiao 等,Journal of Translational Medicine,2022-12-06(IF≈6.1,Springer/BMC)。
研究领域与背景
自闭症谱系障碍(ASD)干预仍缺有效药物;深部脑刺激(DBS)在帕金森抑郁等疾病已获成功,但在 ASD 中靶点与参数未知。前岛叶(anterior insula, AI)参与共情与感觉整合,且 VPA 大鼠可重现社交缺陷与刻板行为,为验证 AI-DBS 的转化价值提供模型。
研究动机
填补“高频 AI-DBS 能否及如何逆转 VPA 大鼠 ASD 样行为”空白,并为临床靶点选择提供机制依据。
2. 研究问题与假设
核心问题
持续高频 AI-DBS 能否通过重塑岛叶蛋白网络改善 VPA 大鼠的社交缺陷与刻板行为?
假设
高频 AI-DBS 下调 ASD 相关即刻早期蛋白 & 增强突触可塑性蛋白 → 提高社交行为、减少刻板动作。
3. 研究方法学与技术路线
实验设计
干预-行为-分子纵向研究。
关键技术
– 模型:孕鼠 VPA 暴露→雄性仔鼠 ASD 模型;双侧 AI 电极植入(术后 7 d 恢复)。
– 干预:130 Hz 高频 DBS,20 d(D11-D29)。
– 行为:三室社交、自梳理、埋珠、IntelliCage 空间学习。
– 分子:岛叶蛋白质组(LC-MS/MS),即刻早期基因(c-Fos, Arc)IHC。
创新方法
首次在 ASD 大鼠模型中采用持续高频 AI-DBS 并整合自动化 IntelliCage 行为学。
4. 结果与数据解析
主要发现
• 社交:DBS 组社交偏好指数 0.65 vs VPA 0.38(p<0.01);改善始于 D18 并持续至 D36 停药后。
• 刻板:自梳理时间↓42 %,埋珠数↓38 %(D18,p<0.01);空间学习与认知僵化无显著差异。
• 蛋白组:鉴定 35 种差异蛋白,其中 19 种 ASD 相关蛋白(如 Shank3、Dlg4)表达逆转(Log2FC>1.5)。
• 即刻基因:c-Fos 阳性细胞↓45 %(p<0.01)。
数据验证
独立批次(n=12)重复社交与刻板测试,差异<10 %;蛋白组结果经 PRM 靶向验证 6 种标志物一致性>90 %。
局限性
仅雄性大鼠;缺乏人类类器官验证;长期电极安全性未评估。
5. 讨论与机制阐释
机制深度
提出“AI-DBS 岛叶蛋白网络重塑”模型:
高频刺激→抑制过度兴奋神经元→下调即刻早期基因→恢复突触蛋白稳态→行为改善。
与既往研究对比
与 2020 年岛叶低频刺激仅改善焦虑相比,本研究首次证实高频 AI-DBS 可特异逆转 ASD 核心社交/刻板症状。
6. 创新点与学术贡献
理论创新
建立“高频 AI-DBS-岛叶蛋白网络-ASD 行为”机制链,为靶向刺激提供生物标志物。
技术贡献
130 Hz 参数与电极坐标可直接转化至灵长类/人类;IntelliCage 范式适用于多基因 ASD 模型。
实际价值
已申请电极设计专利,预计 2025 年启动 I 期临床可行性研究;为药物难治性 ASD 提供微创干预选项。
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
