Fugacity-based multimedia transport modeling and risk assessment of PAHs in Urumqi.

阅读:16
作者:Ma Junxuan, Ailijiang Nuerla, Mamat Anwar, Wu Yixian, Luo Xiaoxiao, Li Min
Currently, there is a lack of a comprehensive understanding of the behavior of polycyclic aromatic hydrocarbons (PAHs) in complex multimedia urban environmental systems. Taking Urumqi City as a case study, we developed an integrated multimedia urban environmental model to simulate the inter-media transport processes of PAHs across air, water, soil, sediment, vegetation, and impervious surfaces. The predictive results of this model were in good agreement with the actual monitoring data from 2021, confirming its accuracy. Notably, the simulated data for 2021 indicate that the total amount of PAHs in the soil reached 1.06 × 10(6) kg, accounting for 97.44% of the total PAHs in Urumqi City, highlighting soil as the primary sink for PAHs. Further analysis of transport fluxes revealed that atmospheric transfer pathways to soil and vegetation are the main mechanisms driving the distribution of PAHs in urban environments. Additionally, sensitivity analysis identified temperature, soil, and vegetation-related parameters as the primary factors influencing PAHs. Based on the simulated concentration, the risk assessment results showed that soil PAHs had a higher risk of carcinogenesis to human body. This study deepens our understanding of the behavior of PAHs in urban environments and provides insights into how human activities affect the fate and transformation of these contaminants in multimedia urban systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。