Phylogenetic models are commonly used in palaeobiology to study the patterns and processes of organismal evolution. In the human sciences, phylogenetic methods have been deployed for reconstructing ancestor-descendant relationships using linguistic and material culture data. Within evolutionary archaeology specifically, phylogenetic analyses based on maximum parsimony and discrete traits dominate, which sets limitations for the downstream role cultural phylogenies, once derived, can play in more elaborate analytical pipelines. Recent methodological advances in Bayesian phylogenetics, however, now allow us to infer evolutionary dynamics using continuous characters. Capitalizing on these developments, we here present an exploratory analysis of cultural macroevolution of projectile point shape evolution in the European Final Palaeolithic and earliest Mesolithic (approx. 15 000-11 000 BP) using a Bayesian phylodynamic approach and the fossilized birth-death process model. This model-based approach leaps far beyond the application of parsimony, in that it not only produces a tree, but also divergence times, and diversification rates while incorporating uncertainties. This allows us to compare rates to the pronounced climatic changes that occurred during our time frame. While common in cultural evolutionary analyses of language, the extension of Bayesian phylodynamic models to archaeology arguably represents a major methodological breakthrough.
A macroevolutionary analysis of European Late Upper Palaeolithic stone tool shape using a Bayesian phylodynamic framework.
阅读:3
作者:Matzig David N, Marwick Ben, Riede Felix, Warnock Rachel C M
| 期刊: | Royal Society Open Science | 影响因子: | 2.900 |
| 时间: | 2024 | 起止号: | 2024 Aug 14; 11(8):240321 |
| doi: | 10.1098/rsos.240321 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
