Microwave-Based State Diagnosis of Three-Way Catalysts: Impact Factors and Application Recommendations.

阅读:3
作者:Steiner Carsten, Malashchuk Vladimir, Kubinski David, Hagen Gunter, Moos Ralf
This study reassesses an overview of the potential of the radio frequency (RF)-based state diagnostics of three-way catalysts (TWC) based on a previous study with an emphasis on the defect chemistry of the catalyst material during reoxidation and reduction. Some data are based on the previous works but are newly processed, and the signal parameters resonant frequency and inverse quality factor are evaluated with respect to applicability. The RF-based method uses electromagnetic resonances in a cavity resonator to provide information on the storage level of the oxygen storage component. The analysis focuses on a holistic investigation and evaluation of the major effects influencing the RF signal during operation. On the one hand, the response to the oxygen storage behavior and the resolution of the measurement method are considered. Therefore, this study merges original data from multiple former publications to provide a comprehensive insight into important measurement effects and their defect chemistry background. On the other hand, the most important cross-sensitivities are discussed and their impact during operation is evaluated. Additionally, the effect of catalyst aging is analyzed. The effects are presented separately for the two resonant parameters: resonant frequency and (unloaded) quality factor. Overall, the data suggest that the quality factor has a way higher signal quality at low temperatures (<400 °C) and the resonant frequency is primarily suitable for high operating temperatures. At most operating points, the quality factor is even more robust against interferences such as exhaust gas stoichiometry and water content. Correctly estimating the catalyst temperature is the most important factor for reliable results, which can be achieved by combining the information of both resonant signals. In the end, the data indicate that microwave-based state diagnosis is a powerful system for evaluating the oxygen storage level over the entire operating range of a TWC. As a research tool and in its application, the system can therefore contribute to the improvement of the emission control of future gasoline vehicles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。