A series of clickable α-azide-Ï-alkyne ionic liquid (IL) monomers with an ethylene oxide spacer were developed and applied to the synthesis of 1,2,3-triazolium-based poly(ionic liquid)s (TPILs) with high ionic conductivities via one-step thermal azide-alkyne cycloaddition click chemistry. Subsequently, the number of IL moieties in the resultant TPILs was further increased by N-alkylation of the 1,2,3-triazole-based backbones of the TPILs with a quarternizing reagent. This strategy affords the preparation of TPILs having either one or two 1,2,3-triazolium cations with bis(trifluoromethylsulfonyl)imide anions in a monomer unit. Synthesis of the TPILs was confirmed by (1)H and (13)C NMR spectroscopy and gel permeation chromatography. The effects of the length of the ethylene oxide spacer and the number of IL moieties in the IL monomer unit on the physicochemical properties of the TPILs were characterized by differential scanning calorimetry, thermogravimetric analysis, and impedance spectroscopy. The introduction of a longer ethylene oxide spacer or an increase in the number of IL moieties in the monomer unit resulted in TPILs with lower glass-transition temperatures and higher ionic conductivities. The highest ionic conductivity achieved in this study was 2.0 à 10(-5) S cm(-1) at 30 °C. These results suggest that the design of the IL monomer provides the resultant polymer with high chain flexibility and a high IL density, and so it is effective for preparing TPILs with high ionic conductivities.
Design of Clickable Ionic Liquid Monomers to Enhance Ionic Conductivity for Main-Chain 1,2,3-Triazolium-Based Poly(Ionic Liquid)s.
阅读:6
作者:Hirai Ruka, Watanabe Takaichi, Ono Tsutomu
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2021 | 起止号: | 2021 Apr 9; 6(15):10030-10038 |
| doi: | 10.1021/acsomega.0c06173 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
