Multiple I-Type Lysozymes in the Hydrothermal Vent Mussel Bathymodiolus azoricus and Their Role in Symbiotic Plasticity.

阅读:11
作者:Detree Camille, Chabenat Apolline, Lallier François H, Satoh Nori, Shoguchi Eiichi, Tanguy Arnaud, Mary Jean
The aim of this study was first to identify lysozymes paralogs in the deep sea mussel Bathymodiolus azoricus then to measure their relative expression or activity in different tissue or conditions. B. azoricus is a bivalve that lives close to hydrothermal chimney in the Mid-Atlantic Ridge (MAR). They harbour in specialized gill cells two types of endosymbiont (gram-bacteria): sulphide oxidizing bacteria (SOX) and methanotrophic bacteria (MOX). This association is thought to be ruled by specific mechanism or actors of regulation to deal with the presence of symbiont but these mechanisms are still poorly understood. Here, we focused on the implication of lysozyme, a bactericidal enzyme, in this endosymbiosis. The relative expression of Ba-lysozymes paralogs and the global anti-microbial activity, were measured in natural population (Lucky Strike--1700 m, Mid-Atlantic Ridge), and in in situ experimental conditions. B. azoricus individuals were moved away from the hydrothermal fluid to induce a loss of symbiont. Then after 6 days some mussels were brought back to the mussel bed to induce a re-acquisition of symbiotic bacteria. Results show the presence of 6 paralogs in B. azoricus. In absence of symbionts, 3 paralogs are up-regulated while others are not differentially expressed. Moreover the global activity of lysozyme is increasing with the loss of symbiont. All together these results suggest that lysozyme may play a crucial role in symbiont regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。