Despite the large number of G-protein-coupled receptor (GPCR) types expressed in the CNS, little is known about their dynamics in neuronal cells. Dynamic properties of the somatostatin type 2A receptor were therefore examined in resting conditions and after agonist activation in living hippocampal neurons. Using fluorescence recovery after photobleaching experiments, we found that, in absence of ligand, the sst(2A) receptor is mobile and laterally and rapidly diffuse in neuronal membranes. We then observed by live-cell imaging that, after agonist activation, membrane-associated receptors induce the recruitment of beta-arrestin 1-enhanced green fluorescent protein (EGFP) and beta-arrestin 2-EGFP to the plasma membrane. In addition, beta-arrestin 1-EGFP translocate to the nucleus, suggesting that this protein could serve as a nuclear messenger for the sst(2A) receptor in neurons. Receptors are then recruited to preexisting clathrin coated pits, form clusters that internalize, fuse, and move to a perinuclear compartment that we identified as the trans-Golgi network (TGN), and recycle. Receptor cargoes are transported through a microtubule-dependent process directly from early endosomes/recycling endosomes to the TGN, bypassing the late endosomal compartment. Together, these results provide a comprehensive description of GPCR trafficking in living neurons and provide compelling evidence that GPCR cargoes can recycle through the TGN after endocytosis, a phenomenon that has not been anticipated from studies of non-neuronal cells.
Dynamics of somatostatin type 2A receptor cargoes in living hippocampal neurons.
阅读:4
作者:Lelouvier Benjamin, Tamagno Gianluca, Kaindl Angela M, Roland Alexandre, Lelievre Vincent, Le Verche Virginia, Loudes Catherine, Gressens Pierre, Faivre-Baumann Annie, Lenkei Zsolt, Dournaud Pascal
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2008 | 起止号: | 2008 Apr 23; 28(17):4336-49 |
| doi: | 10.1523/JNEUROSCI.4379-07.2008 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
