Schwann cells are the myelinating glia of the peripheral nervous system, and their development is regulated by various growth factors, such as neuregulin, platelet-derived growth factor (PDGF), and insulin-like growth factor-I (IGF-I). However, the mechanism of intracellular signaling pathways following these ligand stimuli in Schwann cell differentiation remains elusive. Here, we demonstrate that in cultured Schwann cells, neuregulin and PDGF suppressed the expression of myelin-associated protein markers, whereas IGF-I promoted it. Although these ligands activated common downstream signaling pathways [i.e., extracellular signal-regulated kinase (Erk) and phosphatidylinositol-3-kinase (PI3K)-Akt pathways], the profiles of activation varied among ligands. To elucidate the function of these pathways and the mechanisms underlying Schwann cell differentiation, we used adenoviral vectors to selectively activate or inactivate these pathways. We found that the selective activation of Erk pathways suppressed Schwann cell differentiation, whereas that of PI3K pathways promoted it. Furthermore, lithium chloride, a modulator of glycogen synthase kinase-3beta (GSK-3beta) promoted Schwann cell differentiation, suggesting the involvement of GSK-3beta as a downstream molecule of PI3K-Akt pathways. Selective activation of PI3K pathways in Schwann cells by gene transfer also demonstrated increased myelination in in vitro Schwann cell-DRG neuron cocultures and in vivo allogenic nerve graft experiments. We conclude that signals mediated by PI3K-Akt are crucial for initiation of myelination and that the effects of growth factors are primarily dependent on the balance between Erk and PI3K-Akt activation. Our results also propose the possibility of augmenting Schwann cell functions by modulating intracellular signals in light of future cell therapies.
Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination.
阅读:5
作者:Ogata Toru, Iijima Satoru, Hoshikawa Shinya, Miura Toshiki, Yamamoto Shin-ichi, Oda Hiromi, Nakamura Kozo, Tanaka Sakae
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2004 | 起止号: | 2004 Jul 28; 24(30):6724-32 |
| doi: | 10.1523/JNEUROSCI.5520-03.2004 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
