Mitigation of multi-scale biases in cell-type deconvolution for spatially resolved transcriptomics using HarmoDecon.

利用 HarmoDecon 缓解空间分辨转录组学中细胞类型反卷积的多尺度偏差

阅读:7
作者:Wang Zirui, Xu Ke, Liu Yang, Xu Yu, Zhang Lu
MOTIVATION: The advent of spatially resolved transcriptomics (SRT) has revolutionized our understanding of tissue molecular microenvironments by enabling the study of gene expression in its spatial context. However, many SRT platforms lack single-cell resolution, necessitating cell-type deconvolution methods to estimate cell-type proportions in SRT spots. Despite advancements in existing tools, these methods have not addressed biases occurring at three scales: individual spots, entire tissue samples, and discrepancies between SRT and reference scRNA-seq datasets. These biases result in overbalanced cell-type proportions for each spot, mismatched cell-type fractions at the sample level, and data distribution shifts across platforms. RESULTS: To mitigate these biases, we introduce HarmoDecon, a novel semi-supervised deep learning model for spatial cell-type deconvolution. HarmoDecon leverages pseudo-spots derived from scRNA-seq data and uses Gaussian Mixture Graph Convolutional Networks to address the aforementioned issues. Through extensive simulations on multi-cell spots from STARmap and osmFISH, HarmoDecon outperformed 11 state-of-the-art methods. Additionally, when applied to legacy SRT platforms and 10x Visium datasets, HarmoDecon achieved the highest accuracy in spatial domain clustering and maintained strong correlations between cancer marker genes and cancer cells in human breast cancer samples. These results highlight the utility of HarmoDecon in advancing spatial transcriptomics analysis. AVAILABILITY AND IMPLEMENTATION: The HarmoDecon scripts, with the detailed tutorials, are available at https://github.com/ericcombiolab/HarmoDecon/tree/main.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。