Spatially resolved transcriptomics (SRT) data provide critical insights into gene expression patterns within tissue contexts, necessitating effective methods for identifying spatial domains. We introduce stDyer, an end-to-end deep learning framework for spatial domain clustering in SRT data. stDyer combines Gaussian Mixture Variational AutoEncoder with graph attention networks to learn embeddings and perform clustering. Its dynamic graphs adaptively link units based on Gaussian Mixture assignments, improving clustering and producing smoother domain boundaries. stDyer's mini-batch strategy and multi-GPU support facilitate scalability to large datasets. Benchmarking against state-of-the-art tools, stDyer demonstrates superior performance in spatial domain clustering, multi-slice analysis, and large-scale dataset handling.
stDyer enables spatial domain clustering with dynamic graph embedding.
stDyer 能够利用动态图嵌入实现空间域聚类
阅读:6
作者:Xu Ke, Xu Yu, Wang Zirui, Zhou Xin Maizie, Zhang Lu
| 期刊: | Genome Biology | 影响因子: | 9.400 |
| 时间: | 2025 | 起止号: | 2025 Feb 20; 26(1):34 |
| doi: | 10.1186/s13059-025-03503-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
