MOTIVATION: Relating metabolite and enzyme abundances to metabolic fluxes requires reaction kinetics, core elements of dynamic and enzyme cost models. However, kinetic parameters have been measured only for a fraction of all known enzymes, and the reliability of the available values is unknown. RESULTS: The ENzyme KInetics Estimator (ENKIE) uses Bayesian Multilevel Models to predict value and uncertainty of KM and kcat parameters. Our models use five categorical predictors and achieve prediction performances comparable to deep learning approaches that use sequence and structure information. They provide calibrated uncertainty predictions and interpretable insights into the main sources of uncertainty. We expect our tool to simplify the construction of priors for Bayesian kinetic models of metabolism. AVAILABILITY AND IMPLEMENTATION: Code and Python package are available at https://gitlab.com/csb.ethz/enkie and https://pypi.org/project/enkie/.
ENKIE: a package for predicting enzyme kinetic parameter values and their uncertainties.
阅读:4
作者:Gollub Mattia G, Backes Thierry, Kaltenbach Hans-Michael, Stelling Jörg
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2024 | 起止号: | 2024 Nov 1; 40(11):btae652 |
| doi: | 10.1093/bioinformatics/btae652 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
