MOTIVATION: Random sampling of metabolic fluxes can provide a comprehensive description of the capabilities of a metabolic network. However, current sampling approaches do not model thermodynamics explicitly, leading to inaccurate predictions of an organism's potential or actual metabolic operations. RESULTS: We present a probabilistic framework combining thermodynamic quantities with steady-state flux constraints to analyze the properties of a metabolic network. It includes methods for probabilistic metabolic optimization and for joint sampling of thermodynamic and flux spaces. Applied to a model of Escherichia coli, we use the methods to reveal known and novel mechanisms of substrate channeling, and to accurately predict reaction directions and metabolite concentrations. Interestingly, predicted flux distributions are multimodal, leading to discrete hypotheses on E.coli's metabolic capabilities. AVAILABILITY AND IMPLEMENTATION: Python and MATLAB packages available at https://gitlab.com/csb.ethz/pta. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Probabilistic thermodynamic analysis of metabolic networks.
阅读:4
作者:Gollub Mattia G, Kaltenbach Hans-Michael, Stelling Jörg
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2021 | 起止号: | 2021 Sep 29; 37(18):2938-2945 |
| doi: | 10.1093/bioinformatics/btab194 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
