Monte Carlo (MC) method is commonly considered as the most accurate approach for particle transport simulation because of its capability to precisely model physics interactions and simulation geometry. Conventionally, MC simulation is performed in a particle-by-particle fashion. In certain problems such as computing scattered X-ray photon signal at a detector of CT, the conventional simulation scheme suffers from low efficiency mainly due to the fact that abundant photons are simulated but do not reach the detector. The computational resources spent on those photons are therefore wasted. To solve this problem, this study develops a novel GPU-based Metropolis MC (gMMC) with a novel path-by-path simulation scheme and demonstrates its effectiveness in an example problem of scattered X-ray photon calculation in CT. In contrast to the conventional MC approach, gMMC samples an entire photon path extending from the X-ray source to the detector using Metropolis-Hasting algorithm. The path-by-path simulation scheme ensures contribution of every sampled event to the signal of interest, improving overall efficiency. We benchmark gMMC against an in-house developed GPU-based MC tool, gMCDRR, which performs simulations in the conventional particle-by-particle fashion. gMMC reaches speed up factors of 37~48 times in simple phantom cases and 20-34 times in real patient cases. The results calculated by gMCDRR and gMMC agree well with average differences < 3%.
Metropolis Monte Carlo simulation scheme for fast scattered X-ray photon calculation in CT.
阅读:5
作者:Xu Yuan, Chen Yusi, Tian Zhen, Jia Xun, Zhou Linghong
| 期刊: | Optics Express | 影响因子: | 3.300 |
| 时间: | 2019 | 起止号: | 2019 Jan 21; 27(2):1262-1275 |
| doi: | 10.1364/OE.27.001262 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
