Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images.

阅读:4
作者:Bergeles Christos, Dubis Adam M, Davidson Benjamin, Kasilian Melissa, Kalitzeos Angelos, Carroll Joseph, Dubra Alfredo, Michaelides Michel, Ourselin Sebastien
Precise measurements of photoreceptor numerosity and spatial arrangement are promising biomarkers for the early detection of retinal pathologies and may be valuable in the evaluation of retinal therapies. Adaptive optics scanning light ophthalmoscopy (AOSLO) is a method of imaging that corrects for aberrations of the eye to acquire high-resolution images that reveal the photoreceptor mosaic. These images are typically graded manually by experienced observers, obviating the robust, large-scale use of the technology. This paper addresses unsupervised automated detection of cones in non-confocal, split-detection AOSLO images. Our algorithm leverages the appearance of split-detection images to create a cone model that is used for classification. Results show that it compares favorably to the state-of-the-art, both for images of healthy retinas and for images from patients affected by Stargardt disease. The algorithm presented also compares well to manual annotation while excelling in speed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。