Sparser and Less Efficient Hippocampal-Prefrontal Projections account for Developmental Network Dysfunction in a Model of Psychiatric Risk Mediated by Gene-Environment Interaction

在由基因-环境相互作用介导的精神风险模型中,海马-前额叶投射更稀疏、效率更低,导致发育网络功能障碍

阅读:6
作者:Lingzhen Song, Xiaxia Xu, Peggy Putthoff, David Fleck, Marc Spehr, Ileana L Hanganu-Opatz

Abstract

Precise information flow from the hippocampus (HP) to prefrontal cortex (PFC) emerges during early development and accounts for cognitive processing throughout life. On flip side, this flow is selectively impaired in mental illness. In mouse models of psychiatric risk mediated by gene-environment interaction (GE), the prefrontal-hippocampal coupling is disrupted already shortly after birth. While this impairment relates to local miswiring in PFC and HP, it might be also because of abnormal connectivity between the two brain areas. Here, we test this hypothesis by combining in vivo electrophysiology and optogenetics with in-depth tracing of projections and monitor the morphology and function of hippocampal afferents in the PFC of control and GE mice of either sex throughout development. We show that projections from the hippocampal CA1 area preferentially target layer 5/6 pyramidal neurons and interneurons, and to a lesser extent layer 2/3 neurons of prelimbic cortex (PL), a subdivision of PFC. In neonatal GE mice, sparser axonal projections from CA1 pyramidal neurons with decreased release probability reach the PL. Their ability to entrain layer 5/6 oscillatory activity and firing is decreased. These structural and functional deficits of hippocampal-prelimbic connectivity persist, yet are less prominent in prejuvenile GE mice. Thus, besides local dysfunction of HP and PL, weaker connectivity between the two brain areas is present in GE mice throughout development.SIGNIFICANCE STATEMENT Poor cognitive performance in mental disorders comes along with prefrontal-hippocampal dysfunction. Recent data from mice that model the psychiatric risk mediated by gene-environment (GE) interaction identified the origin of deficits during early development, when the local circuits in both areas are compromised. Here, we show that sparser and less efficient connectivity as well as cellular dysfunction are the substrate of the weaker excitatory drive from hippocampus (HP) to prefrontal cortex (PFC) as well as of poorer oscillatory coupling between the two brain areas in these mice. While the structural and functional connectivity deficits persist during the entire development, their magnitude decreases with age. The results add experimental evidence for the developmental miswiring hypothesis of psychiatric disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。