The clock gene, brain and muscle Arnt-like 1, regulates autophagy in high glucose-induced cardiomyocyte injury

大脑和肌肉时钟基因 Arnt-like 1 调节高糖诱导的心肌细胞损伤中的自噬

阅读:5
作者:Li Qiao #, Bingyan Guo #, Hui Zhang, Rong Yang, Liang Chang, Yaling Wang, Xin Jin, Suyun Liu, Yongjun Li

Abstract

High-glucose-induced cardiomyocyte injury is the major cause of diabetic cardiomyopathy, but its regulatory mechanisms are not fully understood. Here, we report that a circadian clock gene, brain and muscle Arnt-like 1 (Bmal1), increases autophagy in high-glucose-induced cardiomyocyte injury. We constructed a hyperglycemia model with cultured cardiomyocytes from neonatal rats. High-glucose-induced inhibition of autophagy and cardiomyocyte injury were attenuated by Bmal1 overexpression and aggravated by its knockdown. Furthermore, autophagy stabilization by 3-methyladenine or rapamycin partially suppressed the effects of altered Bmal1 expression on cardiomyocyte survival. Mechanistically, Bmal1 mediated resistance to high-glucose-induced inhibition of autophagy at least partly by inhibiting mTOR signaling activity. Collectively, our findings suggest that the clock gene Bmal1 is a positive regulator of autophagy through the mTOR signaling pathway and protects cardiomyocytes against high-glucose toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。