Conclusion
This study emphasizes the prospect of microcurrent therapy as a safe and efficacious non-pharmacological strategy for Alzheimer's disease (AD), providing optimism to the countless individuals impacted by this debilitating ailment. These results contribute to the developments of an innovative clinical protocol for AD and recovery from neurological injury, underscoring the significance of investigating unconventional therapeutic approaches for addressing this complex condition.
Results
The results reveal that microcurrent therapy holds promise in ameliorating memory impairment and reducing neuroinflammation in AD. Behavioral assessments, including the Novel Object Recognition Test (NOR) and Radial Arm Maze Test (RAM), demonstrated improved cognitive function following microcurrent therapy. Furthermore, microcurrent therapy inhibited expression of neuroinflammatory proteins, including ionized calcium binding adaptor molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) in current-treated group. Mechanistic insights suggest that microcurrent therapy may modulate neuroinflammation through the regulation of MAPK signaling pathways.
