Thalamocortical Axonal Activity in Motor Cortex Exhibits Layer-Specific Dynamics during Motor Learning

运动皮层中的丘脑皮质轴突活动在运动学习过程中表现出层特异性动态

阅读:5
作者:Yasuyo H Tanaka, Yasuhiro R Tanaka, Masashi Kondo, Shin-Ichiro Terada, Yasuo Kawaguchi, Masanori Matsuzaki

Abstract

The thalamus is the hub through which neural signals are transmitted from the basal ganglia and cerebellum to the neocortex. However, thalamocortical axonal activity during motor learning remains largely undescribed. We conducted two-photon calcium imaging of thalamocortical axonal activity in the motor cortex of mice learning a self-initiated lever-pull task. Layer 1 (L1) axons came to exhibit activity at lever-pull initiation and termination, while layer 3 (L3) axons did so at lever-pull initiation. L1 population activity had a sequence structure related to both lever-pull duration and reproducibility. Stimulation of the substantia nigra pars reticulata activated more L1 than L3 axons, whereas deep cerebellar nuclei (DCN) stimulation did the opposite. Lesions to either the dorsal striatum or the DCN impaired motor learning and disrupted temporal dynamics in both layers. Thus, layer-specific thalamocortical signals evolve with the progression of learning, which requires both the basal ganglia and cerebellar activities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。