Sleep and Serotonin Modulate Paracapsular Nitric Oxide Synthase Expressing Neurons of the Amygdala

睡眠和血清素调节杏仁核囊旁一氧化氮合酶表达神经元

阅读:6
作者:Marco Bocchio, Simon P Fisher, Gunes Unal, Tommas J Ellender, Vladyslav V Vyazovskiy, Marco Capogna

Abstract

Unraveling the roles of distinct neuron types is a fundamental challenge to understanding brain function in health and disease. In the amygdala, a brain structure regulating emotional behavior, the diversity of GABAergic neurons has been only partially explored. We report a novel population of GABAergic amygdala neurons expressing high levels of neuronal nitric oxide synthase (nNOS). These cells are predominantly localized along basolateral amygdala (BLA) boundaries. Performing ex vivo patch-clamp recordings from nNOS+ neurons in Nos1-CreER;Ai9 mice, we observed that nNOS+ neurons located along the external capsule display distinctive electrophysiological properties, axonal and dendritic arborization, and connectivity. Examining their c-Fos expression, we found that paracapsular nNOS+ neurons are activated during a period of undisturbed sleep following sleep deprivation, but not during sleep deprivation. Consistently, we found that dorsal raphe serotonin [5-hydroxytryptamine (5-HT)] neurons, which are involved in sleep-wake regulation, innervate nNOS+ neurons. Bath application of 5-HT hyperpolarizes nNOS+ neurons via 5-HT1A receptors. This hyperpolarization produces a reduction in firing rate and, occasionally, a switch from tonic to burst firing mode, thereby contrasting with the classic depolarizing effect of 5-HT on BLA GABAergic cells reported so far. Thus, nNOS+ cells are a distinct cell type of the amygdala that controls the activity of downstream neurons in both amygdaloid and extra-amygdaloid regions in a vigilance state-dependent fashion. Given the strong links among mood, sleep deprivation, and 5-HT, the recruitment of paracapsular nNOS+ neurons following high sleep pressure may represent an important mechanism in emotional regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。