Genetic diversity, biofilm formation, and Vancomycin resistance of clinical Clostridium innocuum isolates

临床无害梭菌分离株的遗传多样性、生物膜形成和万古霉素耐药性

阅读:4
作者:Chuan Chiang-Ni, Jing-Yi Huang, Chih-Yun Hsu, Yi-Chi Lo, Yi-Ywan M Chen, Chih-Ho Lai, Cheng-Hsun Chiu

Background

Clostridium innocuum, previously considered a commensal microbe, is a spore-forming anaerobic bacterium. C. innocuum displays inherent resistance to vancomycin and is associated with extra-intestinal infections, antibiotic-associated diarrhea, and inflammatory bowel disease. This study seeks to establish a multilocus sequence typing (MLST) scheme to explore the correlation between C. innocuum genotyping and its potential pathogenic phenotypes.

Conclusions

This study suggests that a specific genetic clade of C. innocuum produces a substantial amount of biofilm. Furthermore, this phenotype assists C. innocuum in resisting high concentrations of vancomycin, which may potentially play undefined roles in C. innocuum pathogenesis.

Methods

Fifty-two C. innocuum isolates from Linkou Chang Gung Memorial Hospital (CGMH) in Taiwan and 60 sequence-available C. innocuum isolates from the National Center for Biotechnolgy Information Genome Database were included. The concentrated sequence of housekeeping genes in C. innocuum was determined by amplicon sequencing and used for MLST and phylogenetic analyses. The biofilm production activity of the C. innocuum isolates was determined by crystal violet staining.

Results

Of the 112 C. innocuum isolates, 58 sequence types were identified. Maximum likelihood estimation categorized 52 CGMH isolates into two phylogenetic clades. These isolates were found to be biofilm producers, with isolates in clade I exhibiting significantly higher biofilm production than isolates in clade II. The sub-inhibitory concentration of vancomycin seemed to minimally influence biofilm production by C. innocuum isolates. Nevertheless, C. innocuum embedded in the biofilm structure demonstrated resistance to vancomycin treatments at a concentration greater than 256 µg/mL. Conclusions: This study suggests that a specific genetic clade of C. innocuum produces a substantial amount of biofilm. Furthermore, this phenotype assists C. innocuum in resisting high concentrations of vancomycin, which may potentially play undefined roles in C. innocuum pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。