Patient-derived induced pluripotent stem cells to study non-canonical splicing variants associated with Hypertrophic Cardiomyopathy

患者来源的诱导性多能干细胞研究与肥厚性心肌病相关的非规范剪接变异

阅读:8
作者:Joanna Jager, Marta Ribeiro, Marta Furtado, Teresa Carvalho, Petros Syrris, Luis R Lopes, Perry M Elliott, Joaquim M S Cabral, Maria Carmo-Fonseca, Simão Teixeira da Rocha, Sandra Martins

Abstract

Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiomyopathy and a leading cause of sudden death. Genetic testing and familial cascade screening play a pivotal role in the clinical management of HCM patients. However, conventional genetic tests primarily focus on the detection of exonic and canonical splice site variation. Oversighting intronic non-canonical splicing variants potentially contributes to a proportion of HCM patients remaining genetically undiagnosed. Here, using a non-integrative reprogramming strategy, we generated induced pluripotent stem cell (iPSC) lines from four individuals carrying one of two variants within intronic regions of MYBPC3: c.1224-52G > A and c.1898-23A > G. Upon differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), mis-spliced mRNAs were identified in cells harbouring these variants. Both abnormal mRNAs contained a premature termination codon (PTC), fitting the criteria for activation of nonsense mediated decay (NMD). However, the c.1898-23A > G transcripts escaped this mRNA quality control mechanism, while the c.1224-52G > A transcripts were degraded. The newly generated iPSC lines represent valuable tools for studying the functional consequences of intronic variation and for translational research aimed at reversing splicing abnormalities to prevent disease progression.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。