Isoginkgetin and Madrasin are poor splicing inhibitors

异银杏素和马德拉辛是较差的剪接抑制剂

阅读:7
作者:Michael Tellier, Gilbert Ansa, Shona Murphy

Abstract

The production of eukaryotic mRNAs requires transcription by RNA polymerase (pol) II and co-transcriptional processing, including capping, splicing, and cleavage and polyadenylation. Pol II can positively affect co-transcriptional processing through interaction of factors with its carboxyl terminal domain (CTD), comprising 52 repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, and pol II elongation rate can regulate splicing. Splicing, in turn, can also affect transcriptional activity and transcription elongation defects are caused by some splicing inhibitors. Multiple small molecule inhibitors of splicing are now available, some of which specifically target SF3B1, a U2 snRNP component. SF3B1 inhibition results in a general downregulation of transcription elongation, including premature termination of transcription caused by increased use of intronic poly(A) sites. Here, we have investigated the effect of Madrasin and Isoginkgetin, two non-SF3B1 splicing inhibitors, on splicing and transcription. Surprisingly, we found that both Madrasin and Isoginkgetin affect transcription before any effect on splicing, indicating that their effect on pre-mRNA splicing is likely to be indirect. Both small molecules promote a general downregulation of transcription. Based on these and other published results, we conclude that these two small molecules should not be considered as primarily pre-mRNA splicing inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。