UBA2 activates Wnt/β-catenin signaling pathway during protection of R28 retinal precursor cells from hypoxia by extracellular vesicles derived from placental mesenchymal stem cells

UBA2 在胎盘间充质干细胞来源的细胞外囊泡保护 R28 视网膜前体细胞免受缺氧过程中激活 Wnt/β-catenin 信号通路

阅读:6
作者:Kyungmin Koh, Mira Park, Eun Soo Bae, Van-An Duong, Jong-Moon Park, Hookeun Lee, Helen Lew

Background

Stem cell transplantation has been proposed as an alternative treatment for intractable optic nerve disorders characterized by irrecoverable loss of cells. Mesenchymal stem cells, with varying tissue regeneration and recovery capabilities, are being considered for potential cell therapies. To overcome the limitations of cell therapy, we isolated exosomes from human placenta-derived mesenchymal stem cells (hPMSCs) and investigated their therapeutic effects in R28 cells (retinal precursor cells) exposed to CoCl2. Method: After 9 h of exposure to CoCl2, the hypoxic damaged R28 cells were divided into the non-treatment group (CoCl2 + R28 cells) and treatment group (CoCl2 + R28 cells treated with exosome). Immunoblot analysis was performed for Pcna, Hif-1α, Vegf, Vimentin, Thy-1, Gap43, Ermn, Neuroflament, Wnt3a, β-catenin, phospo-GSK3β, Lef-1, UBA2, Skp1, βTrcp, and ubiquitin. The proteomes of each group were analyzed by liquid chromatography/tandem mass (LC-MS/MS) spectrometry. Differentially expressed proteins (DEPs) were detected by label-free quantification, and the interactions of the proteins were examined through signal transduction pathway and gene ontology analysis. Result: We observed that exosome could significantly recover proliferation damaged by CoCl2 treatment. In addition, the treatment group presented the decreased expression of Hif-1α protein (P < 0.05) and increased expression of proliferation marker, Pcna, and nerve regeneration-related factors such as Vimentin, Thy-1, and Neuroflament (P < 0.05) compared with the non-treatment group. In total, 200 DEPs were identified in the non-treatment group and treatment group (fold change ≥ 2, p < 0.05). Catenin and ubiquitin systems (UBA2, UBE2E3, UBE2I) were found in both the DEP lists of downregulated proteins from the non-treatment group and upregulated proteins from the treatment group. The mRNA expressions of ubiquitin systems were significantly decreased under hypoxic conditions. Moreover, UBA2 and Wnt/β-catenin protein were associated with the rescue of the hypoxic damaged R28 cells. Using a siRNA system, we could find it out that hPMSC exosomes could not repair altered expressions of target proteins by CoCl2 in lacking UBA2 R28 cells.

Conclusion

This study reported that hypoxic damaged expression of regeneration markers in R28 cells was significantly recovered by hPMSC exosomes. We could also demonstrate that UBA2 played a key role in activating the Wnt/β-catenin signaling pathway during protection of hypoxic damaged R28 cells, induced by hPMSC exosomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。