High-Throughput Quantitation of Yeast uORF Regulatory Impacts Using FACS-uORF

使用 FACS-uORF 对酵母 uORF 调控影响进行高通量定量分析

阅读:4
作者:Gemma E May, C Joel McManus

Abstract

Eukaryotic upstream Open Reading Frames (uORFs) are short translated regions found in many transcript leaders (Barbosa et al. PLoS Genet 9:e1003529, 2013; Zhang et al. Trends Biochem Sci 44:782-794, 2019). Modern transcript annotations and ribosome profiling studies have found thousands of AUG-initiated uORFs, and many more uORFs initiated by near-cognate codons (CUG, GUG, UUG, etc.). Their translation generally decreases the expression of the main encoded protein by preventing ribosomes from reaching the main ORF of each gene, and by inducing nonsense mediated decay (NMD) through premature termination. Under many cellular stresses, uORF containing transcripts are de-repressed due to decreased translation initiation (Young et al. J Biol Chem 291:16927-16935, 2016). Traditional experimental evaluation of uORFs involves comparing expression from matched uORF-containing and start-codon mutated transcript leader reporter plasmids. This tedious process has precluded analysis of large numbers of uORFs. We recently used FACS-uORF to simultaneously assay thousands of yeast uORFs in order to evaluate the impact of codon usage on their functions (Lin et al. Nucleic Acids Res 2:1-10, 2019). Here, we provide a step-by-step protocol for this assay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。