Stimulation of aquaporin-mediated fluid transport by cyclic GMP in human retinal pigment epithelium in vitro

体外环磷酸鸟苷对人视网膜色素上皮细胞水通道蛋白介导的液体运输的刺激

阅读:6
作者:Nicholas W Baetz, W Daniel Stamer, Andrea J Yool

Conclusions

The effect of cGMP is consistent with an enhancement of the net fluid flux in RPE mediated by AQP1 channels. Pharmacologic activation of cGMP signaling and concomitant stimulation of fluid uptake from the subretinal space could offer insights into a new approach to treating or reducing the risk of retinal detachment.

Methods

The hypothesis was tested using human RPE cultures that retain properties seen in vivo. Confluent monolayers were treated with ANP or membrane-permeable cGMP analogs in the presence of anantin, H-8, and an AQP1 inhibitor, AqB013. Fluid movement from the apical to basal chambers was measured by weight and used to calculate net fluid transport.

Purpose

The retinal pigment epithelium (RPE) expresses aquaporin-1 (AQP1) and components of the natriuretic peptide signaling pathway. We hypothesized that stimulation of the natriuretic signaling pathway in RPE with atrial natriuretic peptide (ANP) and with membrane-permeable analogs of cGMP would induce a net apical-to-basal transport of fluid.

Results

Our results demonstrated a 40% increase in net apical-to-basal fluid transport by ANP (5 μM) that was inhibited completely by the ANP receptor antagonist anantin and a 60% increase in net apical-to-basal fluid transport in response to the extracellularly applied membrane-permeable cGMP analog pCPT-cGMP (50 μM), which was not affected by the protein kinase G inhibitor H-8. The aquaporin antagonist AqB013 (20 μM) inhibited the cGMP-stimulated RPE fluid flux. Conclusions: The effect of cGMP is consistent with an enhancement of the net fluid flux in RPE mediated by AQP1 channels. Pharmacologic activation of cGMP signaling and concomitant stimulation of fluid uptake from the subretinal space could offer insights into a new approach to treating or reducing the risk of retinal detachment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。