Excitotoxic-mediated transcriptional decreases in HCN2 channel function increase network excitability in CA1

兴奋毒性介导的 HCN2 通道功能转录降低增加了 CA1 中的网络兴奋性

阅读:11
作者:Brendan E L Adams, Christopher A Reid, Damian Myers, Caroline Ng, Kim Powell, A Marie Phillips, Thomas Zheng, Terence J O'Brien, David A Williams

Abstract

Changes in the conductance of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel that mediates Ih are proposed to contribute to increased network excitability. Synchronous neuronal burst activity is a good reflection of network excitability and can be generated in isolated hippocampal slice cultures by removing Mg2+ from the extracellular fluid. We demonstrate that Ih contributes to this activity by increasing both the frequency and duration of bursting events. Changes in HCN channel function are also implicated in altered seizure susceptibility. Short-term application of kainic acid (KA) is known to initiate long lasting changes in neuronal networks that result in seizures, and in slice cultures was found to alter HCN mRNA levels in an isoform and hippocampal sub-region specific manner. These changes correlate with the ability of each sub-region to develop synchronous burst activity following KA that we have previously reported. Specifically, a loss of synchronous activity in the CA3 correlated with an increase in HCN2 mRNA levels that normalized concomitantly with the restoration of CA3 burst activity 7 days post insult. In contrast, in CA1 an increase in synchronous burst duration correlated with a reduction in HCN2 mRNA levels and both changes were still evident for 7 days post insult. Lamotrigine, known to increase Ih, reversed the impact of KA on burst duration in CA1 at both time-points linking a transcriptional reduction in HCN2 function to increased burst duration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。