3D dynamic culture of muse cells on a porous gelatin microsphere after magnetic sorting: Achieving high purity proliferation

磁选后在多孔明胶微球上进行 Muse 细胞的 3D 动态培养:实现高纯度增殖

阅读:5
作者:Zhe Lu, Shifeng Ren, Bingjie Wang, Yajun Zhang, Xiaodong Mu, Zhihui Wang

Abstract

Muse cell has become a promising source of cells for disease treatment due to its remarkable characteristics, including stress tolerance, low tumorigenicity, effective homing ability, and differentiation into histocompatibility cells after transplantation. However, there are some obvious obstacles that need to be overcome in the efficient expansion of Muse cells. We extracted mesenchymal stem cells (MSCs) from human umbilical cord and their MSCs phenotypes were verified by flow cytometry. Then, immune magnetic sorting was performed to obtain Muse cells, and the expression of pluripotency related factors and the ability to differentiate into three germ layers were verified with sorted Muse cells. We then tested a new 3D culture method with dynamic microsphere carrier to possibly expand Muse cells more efficiently. Finally, in vivo experiments were conducted to check the homing ability of Muse cells to muscle injury. Our results showed that, the cultivation and expansion of Muse cells can be more effectively achieved through dynamic microsphere carrier; compared to non-Muse cells, Muse cells have stronger pluripotency and differentiation ability, and their homing ability in the muscle injury mice model is superior to that of non-Muse cells. Therefore, with the method of immune magnetic sorting and dynamic microsphere carrier, highly regenerative Muse cells can be more effectively sorted and expanded from MSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。