Severe respiratory syncytial virus bronchiolitis in infants is associated with reduced airway interferon gamma and substance P

婴儿严重呼吸道合胞病毒细支气管炎与气道干扰素γ和P物质减少有关

阅读:12
作者:Malcolm G Semple, Hinke M Dankert, Bahram Ebrahimi, Jailson B Correia, J Angela Booth, James P Stewart, Rosalind L Smyth, C Anthony Hart

Aim

to determine if factors mediating proposed mechanisms for severe bronchiolitis differ with severity of disease. Methodology/principle findings: 197 infants admitted to hospital with hRSV bronchiolitis were recruited and grouped according to no oxygen requirement (n = 27), oxygen dependence (n = 114) or mechanical ventilation (n = 56). We collected clinical data, nasopharyngeal aspirate (NPA) and if ventilated bronchoalveolar lavage (BAL). Interferon-gamma (IFN-gamma), substance P (SP), interleukin 9 (IL-9), urea and hRSV load, were measured in cell free supernatant from NPA and BAL. Multivariate analysis compared independent effects of clinical, virological and immunological variables upon disease severity. IFN-gamma and SP concentrations were lower in NPA from infants who required oxygen or mechanical ventilation. Viral load and IL-9 concentrations were high but did not vary with severity of disease. Independent predictors of severe disease (in diminishing size of effect) were low weight on admission, low gestation at birth, low NPA IFN-gamma and NPA SP. Nasal airway sampling appears to be a useful surrogate for distal airway sampling since concentrations of IFN-gamma, SP, IL-9 and viral load in NPA correlate with the same in BAL. Conclusions: Our data support two proposed mechanisms for severe hRSV disease; reduced local IFN-gamma response and SP mediated inflammation. We found large amounts of hRSV and IL-9 in airways secretions from the upper and lower respiratory tract but could not associate these with disease severity.

Background

Severe human respiratory syncytial virus (hRSV) bronchiolitis in previously well infants may be due to differences in the innate immune response to hRSV infection.

Conclusions

Our data support two proposed mechanisms for severe hRSV disease; reduced local IFN-gamma response and SP mediated inflammation. We found large amounts of hRSV and IL-9 in airways secretions from the upper and lower respiratory tract but could not associate these with disease severity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。