Therapeutic Potential of Cajanus cajan (L.) Millsp. Leaf Extract in Modulating Gut Microbiota and Immune Response for the Treatment of Inflammatory Bowel Disease

木豆叶提取物在调节肠道菌群和免疫反应治疗炎症性肠病方面的治疗潜力

阅读:13
作者:Mingzhang Lin, Linghua Piao, Zhendong Zhao, Li Liao, Dayong Wang, Haiwen Zhang, Xiande Liu

Conclusions

The present results suggested that CCLE, comprising stilbenes like cajaninstilbene acid, longistylin A, and longistylin C, protects the epithelial barrier's structure and function against DSS-induced acute IBD by restoring gut microbiota balance and systemic immune response as AhR agonists. Overall, CCLE represents a promising natural product-based therapeutic strategy for treating IBD by restoring gut microbiota balance and modulating systemic immune responses.

Methods

In this study, the major compounds from Cajanus cajan leaf extract (CCLE) were initially characterized by LCMS-IT-TOF. The IBD model was developed in C57BL/6 mice by administering continuous 4% (w/v) dextran sodium sulfate (DSS) aqueous solution over a period of seven days. The body weight, colon length, disease activity index (DAI), and histopathological examination using hematoxylin and eosin (H&E) staining were performed in the IBD model. The levels of the main inflammatory factors, specifically TNF-α, IL-1β, IL-6, and myeloperoxidase (MPO), were quantified by employing enzyme-linked immunosorbent assay (ELISA) kits. Additionally, the levels of tight junction proteins (ZO-1, Occludin) and oxidative stress enzymes (iNOS, SOD1, CAT) were investigated by qPCR. Subsequently, flow cytometry was employed to analyze the populations of various immune cells within the spleen, thereby assessing the impact of the CCLE on the systemic immune homeostasis of IBD mice. Finally, 16S rDNA sequencing was conducted to examine the composition and relative abundance of gut microbiota across different experimental groups. In addition, molecular docking analysis was performed to assess the interaction between the principal components of CCLE and the aryl hydrocarbon receptor (AHR).

Results

We identified seven bioactive compounds in CCLE: catechin, cajachalcone, 2-hydroxy-4-methoxy-6-(2-phenylcinyl)-benzoic acid, longistylin A, longistylin C, pinostrobin, amorfrutin A, and cajaninstilbene acid. Our results demonstrated that oral administration of CCLE significantly alleviates gastrointestinal symptoms in DSS-induced IBD mice by modulating the balance of gut-derived pro- and anti-inflammatory cytokines. This modulation is associated with a functional correction in M1/M2 macrophage polarization and the Th17/Treg cell balance in splenic immune cells, as well as shifts in the populations of harmful bacteria (Erysipelatoclostridium and Staphylococcus) and beneficial bacteria (Odoribacter, unidentified Oscillospiraceae, Lachnoclostridium, and Oscillibacter) in the gut. Furthermore, cajaninstilbene acid, longistylin A, and longistylin C were identified as potential AhR agonists. Conclusions: The present results suggested that CCLE, comprising stilbenes like cajaninstilbene acid, longistylin A, and longistylin C, protects the epithelial barrier's structure and function against DSS-induced acute IBD by restoring gut microbiota balance and systemic immune response as AhR agonists. Overall, CCLE represents a promising natural product-based therapeutic strategy for treating IBD by restoring gut microbiota balance and modulating systemic immune responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。